# The Temperature Dependence of the G-Values of Nitrogen from the Gas-phase $\gamma$ -Radiolysis of C<sub>3</sub>-Hydrocarbons in the Presence of Nitrous Oxide

Kiyoshi Okazaki, Rei Yugeta, Ken-ichi Kowari, and Shin Sato
Department of Applied Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152
(Received March 6, 1974)

The G-values of nitrogen from the gas-phase  $\gamma$ -radiolysis of the  $C_3$ -hydrocarbons (propane, propylene, and cyclopropane) in the presence of nitrous oxide have been measured at the temperatures from -35 to 150 °C. The G-values increased with an increase in the pressure of  $N_2O$  and were saturated at about 4 mol % of  $N_2O$ . The saturated values,  $G(N_2)_{max}$ 's showed characteristic temperature dependences. In propane, they scarcely changed with the temperature and stayed at around  $2 G_e$ . Here  $G_e$  is the G-value of electrons estimated from the W-value of the hydrocarbon. In propylene, the  $G(N_2)_{max}$  changed from  $G_e$  at -35 °C to about  $2 G_e$  at 150 °C, while in cyclopropane it changed from  $G_e$  at -35 °C to  $4.5 G_e$  at 100 °C. Possible reaction mechanisms to explain these results have been discussed.

Nitrous oxide is a well-known electron scavenger.<sup>1,2)</sup> When a hydrocarbon is  $\gamma$ -irradiated in the presence of a small amount of nitrous oxide, nitrogen is one of the main products and its formation can be explained by the mechanism initiated by the electron capture of nitrous oxide. The quantitative measurement, however, shows that the G-value of nitrogen is always larger than the G-value of scavenged electrons. This fact is now one of the most persistent problems in the study of hydrocarbon-radiolysis.<sup>3-7)</sup>

In a previous paper,<sup>7)</sup> we showed that the G-value of nitrogen from the N<sub>2</sub>O-1-butene system is strongly dependent upon the temperature as well as on the total dose and the dose rate, and that these effects make the problem more complex. The present paper will report the results obtained with the C<sub>3</sub>-hydrocarbons (propane, propylene, and cyclopropane), with which we can make experiments at lower temperatures at the same pressures.

## **Experimental**

The experimental procedure was the same as that reported previously.") The temperature of -35 °C was obtained by mixing ice and CaCl<sub>2</sub> in a Dewar flask. The temperature lasted (within  $\pm 5$  °C) long enough for the  $\gamma$ -irradiation, usually three hours.

## Results

Figure 1 shows the temperature dependence of the  $G(N_2)$ 's from the three  $C_3$ -hydrocarbons- $N_2O$  systems. Figure 2 shows the  $G(H_2)$ 's obtained simultaneously

Table 1. The effects of the additives on the  $G(N_2)$ 's from the 4 mol%  $N_2O-C_3$  hydrocarbon systems at 0 °C

|              | $G(\mathbf{N_2})$        |                                  |                         |     |                                  |
|--------------|--------------------------|----------------------------------|-------------------------|-----|----------------------------------|
|              | N <sub>2</sub> O<br>only | SF <sub>6</sub><br>0.03<br>mol % | CO <sub>2</sub> 4 mol % | 4   | CH <sub>3</sub> OH<br>4<br>mol % |
| Propane      | 8.2                      | 0.2                              | 4.4                     | 4.4 | 20.6                             |
| Propylene    | 5.0                      | 0.3                              | 3.8                     | 4.4 | 11.1                             |
| Cyclopropane | 5.9                      | 0.2                              | 3.8                     | 4.4 | 27.1                             |

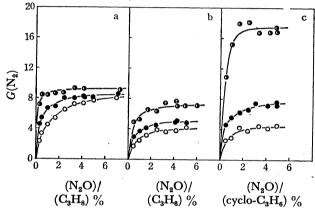



Fig. 1. The temperature dependence of the  $G(N_2)$ 's from  $C_3$ -hydrocarbons in the presence of nitrous oxide. a: propane, b: propylene, c: cyclopropane;  $\bigcirc: -35$  °C,  $\bigcirc: 0$  °C,  $\bigcirc: 100$  °C,  $\bigcirc: 150$  °C.

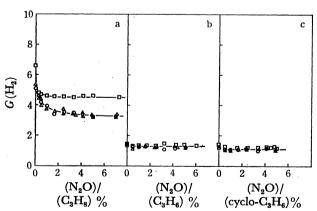



Fig. 2. The temperature dependence of the G(H<sub>2</sub>)'s from C<sub>3</sub>-hydrocarbons in the presence of nitrous oxide. a: propane, b: propylene, c: cyclopropane; ○: -35 °C, △: 0 °C, □: 100 °C.

with the  $G(N_2)$ 's. The pressure of hydrocarbons is always around 600 Torr, and the dose rate is  $1.3 \times 10^{13}$  eV ml<sup>-1</sup> s<sup>-1</sup>. In order to elucidate the reaction mechanisms, the effects of several additives were also studied. The results are summarized in Table 1.

### **Discussion**

The electrons generated by  $\gamma$ -rays in a high-pressure hydrocarbon will be thermalized very quickly. According to the measurement of Warman and Sauer<sup>8)</sup> using a microwave technique, 0.2 Torr of n-hexane is high enough to thermalize electrons in a few microseconds. In the present experiment, all the samples contain 600 Torr of  $C_3$ -hydrocarbons. The precursor of the nitrogen measured above must be thermalized electrons.<sup>9)</sup>

Warman and Fessenden suggested that the electron capture by  $N_2O$  occurs through the third-body reaction:<sup>10)</sup>

$$e^- + N_2O + M \longrightarrow N_2O^- + M$$
 (1)

However, the formation of  $N_2O^-$  ions is doubted by many researchers. One of the reasons is that  $N_2O^-$  ions have not been observed in the mass-spectrometric study at low pressures of  $N_2O^{(11)}$ . The reaction might be:

$$e^- + N_2O \xrightarrow{(+M)} N_2 + O^-$$
 (2)

The present experiment cannot specify the reaction. In a previous paper, 7) we proposed this reaction:

$$N_2O^- + SF_6 \longrightarrow N_2O + SF_6^-$$
 (3)

to explain the fact that a very small amount of  $SF_6$  can inhibit the formation of nitrogen from the  $N_2O$ -hydrocarbon systems. However, according to the recent paper of Bansal and Fessenden,<sup>12)</sup> the electron capture of  $SF_6$  is extremely fast  $(2\times10^{-7}~{\rm cm^3~mol^{-1}~s^{-1}})$ . If this is true, the inhibition effect can be explained simply by the competition of  $N_2O$  and  $SF_6$  for thermalized electrons.

In the following discussion, we will assume that  $N_2O^-$  ions, even if produced, react much as do  $O^-$  ions. When  $O^-$  (or  $N_2O^-$ ) ions are produced in propane, the following reaction will occur very readily:

$$O^- + C_3 H_8 \longrightarrow OH^- + C_3 H_7 \tag{4}$$

The rate of Reaction (4) has been reported to be  $9.3 \times 10^{-10}$  cm<sup>3</sup> mol<sup>-1</sup> s<sup>-1</sup>.<sup>13</sup>) Since the OH<sup>-</sup> ions thus formed are stable ions as far as they are not neutralized (the neutralization time at the dose rate used here is estimated to be  $10^{-3}$  s), the following addition reaction may occur:

$$OH^- + N_2O \longrightarrow OHN_2O^-$$
 (5)

This reaction has been proposed by Parkes<sup>14)</sup> on the basis of the mass-spectrometric observation that the principal product in the  $N_2O-C_2H_6$  system is the mass 61, OHN<sub>2</sub>O<sup>-</sup>.

In our propane case, therefore, the main neutralization reaction may be:

$$OHN_2O^- + C_3H_8^+ \longrightarrow N_2 + C_3H_7 + 2OH$$
 (6)

If this mechanism is correct, we can understand the  $G(N_2) \simeq 2G_e$  relation, which should be independent of the temperature examined. If  $NH_3$ , the dipole moment of which is larger than that of  $N_2O$ , is present, Reaction (5) will be interrupted by the clustering of  $NH_3$  on the  $OH^-$  ion. This is in accord with the observation that the addition of  $NH_3$  to the  $N_2O$ -

hydrocarbon system decreased the  $G(N_2)_{max}$ 's to  $G_e$ , as shown in Table 1.

When propylene is the substrate, there are two possible processes in the reaction of O<sup>-</sup> ions, because they are mono-radicals:

$$CH_3CH=CH_2 + O^- \longrightarrow CH_2CH=CH_2 + OH^- \qquad (7)$$

$$CH_3CH-CH_2-O^- \qquad (8)$$

Process (8) may be a third-body reaction, and the product ions may not contribute to the formation of nitrogen. By analogy to the reactions of monoradicals with olefins, Process (7) will have a certain amount of activation energy, while the activation energy of Process (8) may be nearly zero. Taking these reactions into account, the temperature dependence of the  $G(N_2)_{\rm max}$  in propylene may be expressed as follows:

$$\frac{G(N_2)_{\text{max}}}{G_{\text{e}}} = 1 + \frac{A \exp(-E_7/RT)}{1 + A \exp(-E_7/RT)}$$

Here,  $E_7$  represents the activation energy of Process (7). A is the ratio of the pre-exponential factors of Processes (7) and (8). The curve shown in Fig. 3 is drawn by assuming that  $E_7$ =4.7 kcal mol<sup>-1</sup> and A=2.8×10². These values are not unreasonable for a radical reaction. <sup>15)</sup>

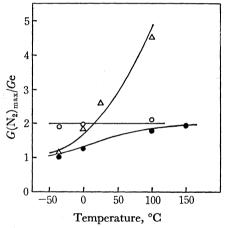



Fig. 3. The temperature dependence of the  $G(N_2)_{max}$ 's  $\bigcirc$ : propane,  $\bigcirc$ : propylene,  $\triangle$ : cyclopropane.

In the case of cyclopropane, much more speculation has to be undertaken, because very few reports have been published on the reactions of cyclopropane. The results described above obviously show the chain decomposition of  $N_2O$ . One possible chain reaction is as follows:

$$O^- + \text{cyclo-}C_3H_6 \longrightarrow CH_2O^- + C_2H_4$$
 (9)

$$CH_2O^- + N_2O \longrightarrow CH_2O + N_2 + O^-$$
 (10)

The apparent activation energy for the formation of nitrogen was calculated to be 3.6 kcal mol<sup>-1</sup> by using this equation:

$$G(N_2)_{\text{max}}/G_e = 1 + A_9 \exp(-E_9/RT)$$

Here,  $A_9$  and  $E_9$  are the pre-exponential factor and the activation energy of Process (9) respectively.

The addition of  $CO_2$  to the 4 mol%  $N_2O-C_3$ -hydrocarbon systems reduced the  $G(N_2)$ 's to around  $G_e$ , irrespective of the  $C_3$ -hydrocarbons. Such an effect

has already been reported by Warman;5) it may be interpreted in terms of this reaction:

$$O^- (or N_2O^-) + CO_2 \longrightarrow CO_3^- (+N_2)$$
 (11)

The effect of  $CH_3OH$  on the  $G(N_2)$ 's is obviously different from those of other additives. In the radiolysis of pure methanol, it has already been recognized that, when N<sub>2</sub>O is added to the system, nitrogen is produced in a chain reaction. 16) Although CH<sub>3</sub>OH has been used as a positive ion-interceptor in the liquid-phase radiolysis, its effect is obviously not so simple in the gas-phase.

### References

- 1) G. Scholes and M. Simic, Nature, 202, 895 (1964).
- 2) S. Sato, R. Yugeta, K. Shinsaka, and T. Terao, This Bulletin, 39, 156 (1966).
- 3) W. J. Holtslander and G. R. Freeman, Can. J. Chem., 45, 1661 (1967); J. Phys. Chem., 71, 2562 (1967).
  - 4) S. J. Rzad and J. M. Warman, ibid., 72, 3013 (1968).
  - 5) J. M. Warman, ibid., 71, 4066 (1967).
  - 6) G. R. A. Johnson and J. L. Redpath, Trans. Faraday

Soc., 66, 861 (1970).

- 7) K. Okazaki, R. Yugeta, and S. Sato, This Bulletin, 46, 2066 (1973).
- 8) J. M. Warman and M. C. Sauer, Jr., J. Chem. Phys., **52**, 6428 (1970).
- 9) By using the equation proposed for the thermalization of electrons in n-hexane, the thermalization time at 600 Torr is estimated to be 10<sup>-10</sup> s, while the lifetime in the presence of N2O, which captures electrons, can be calculated to be longer than  $10^{-4}$  s.<sup>10</sup>
- 10) J. M. Warman and R. W. Fessenden, J. Chem. Phys., 49, 4718 (1968).
- J. L. Moruzzi and J. T. Dakin, *ibid.*, **49**, 5000 (1968).
   K. M. Bansal and R. W. Fessenden, *ibid.*, **59**, 1760 (1973).
- 13) D. K. Bohme and F. C. Fehsenfeld, Can. J. Chem., 47, 2715 (1969).
- 14) D. A. Parkes, J. Chem. Soc. Faraday I, 68, 2103 (1972).
- 15) J. A. Kerr and A. F. Trotman-Dickenson, "Progress in Reaction Kinetics," Vol. 1, ed. by G. Porter, Pergamon Press, Oxford (1961), p. 105.
- 16) M. Meaburn and F. W. Mellows, Trans. Faraday Soc., **61**, 1701 (1965).